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Fast Graph Generation via Spectral Diffusion
Tianze Luo , Zhanfeng Mo , and Sinno Jialin Pan , Senior Member, IEEE

Abstract—Generating graph-structured data is a challenging
problem, which requires learning the underlying distribution of
graphs. Various models such as graph VAE, graph GANs, and
graph diffusion models have been proposed to generate mean-
ingful and reliable graphs, among which the diffusion models
have achieved state-of-the-art performance. In this paper, we ar-
gue that running full-rank diffusion SDEs on the whole graph
adjacency matrix space hinders diffusion models from learning
graph topology generation, and hence significantly deteriorates
the quality of generated graph data. To address this limitation,
we propose an efficient yet effective Graph Spectral Diffusion
Model (GSDM), which is driven by low-rank diffusion SDEs on
the graph spectrum space. Our spectral diffusion model is further
proven to enjoy a substantially stronger theoretical guarantee than
standard diffusion models. Extensive experiments across various
datasets demonstrate that our proposed GSDM turns out to be
the SOTA model, by exhibiting both significantly higher genera-
tion quality and much less computational consumption than the
baselines.

Index Terms—Graph diffusion, graph generative model,
stochastic differential equations.

I. INTRODUCTION

L EARNING to generate graph-structural data not only re-
quires knowing the nodes’ feature distribution but also a

deep understanding of the underlying graph topology, which
is essential to modeling various graph instances, such as so-
cial networks [1], [2], molecule structures [3], [4], neural ar-
chitectures [5], recommender systems [6], etc. Conventional
likelihood-based graph generative models, e.g. GraphGAN [7],
GraphVAE [8] and GraphRNN [9], have demonstrated great
strength on graph generation tasks. In general, a likelihood-
based model is designed to learn the likelihood function of the
underlying graph data distribution, with which one can draw new
samples with preserved graph properties from the distribution
of interest. However, most likelihood-based generative models
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Fig. 1. Illustration of the difference between applying conventional SDE
diffusion on images (a) and graphs (b).

suffer from either limited quality of modeling graph structures,
or considerable computational burden [10].

Recently, a series of diffusion-based generative models have
been proposed to overcome the limitations of likelihood-based
models. Although being originally established for image gen-
eration [11], diffusion models exhibit great success in graph
generation tasks with complex graph structural properties [10],
[12]. Roughly speaking, diffusion is a mathematical technique
that involves a Stochastic Differential Equation (SDE) used to
smoothly transform real data into pure noise by adding more
noise. Diffusion models are a class of probabilistic generative
models that use this technique in reverse to generate representa-
tive data samples from noise. These models are trained to learn
the underlying structure of a dataset by simulating how data
points gradually become blurry due to added noise. Therefore,
a well-trained diffusion model allows us to restore the original
data by reversing the diffusion process and gradually removing
the noise from the blurred sample. The first graph diffusion
model through SDEs, coined Graph Diffusion via SDE Sys-
tems (GDSS) [10], is designed to simultaneously generate node
features and adjacency matrix via reversed diffusion. Similar
to image diffusion models [11], [13], at each diffusion step,
GDSS directly inserts standard Gaussian noise to both node
features and the adjacency matrix. Meanwhile, two separate
neural networks are trained to learn the score functions of the
node features and adjacency matrix, respectively.

However, unlike the densely distributed image data, graph
adjacency matrices can be highly sparse, which makes isotropic
Gaussian noise insertion incompatible with graph structural
data. In these circumstances, as shown in Fig. 1, there is a
stark difference between the diffusion process on images and
on graph adjacency matrices. As can be seen from the figure,
the image corrupted by full-rank Gaussian noise exhibits rec-
ognizable numerical patterns along the early- and middle-stage
of forward diffusion. However, the corrupted sparse graph ad-
jacency matrix degenerates into a dense matrix with uniformly
distributed entries in a few diffusion steps. In intuition, Fig. 1
implies that standard diffusion SDEs with full-rank isotropic
noise insertion are destructive of learning graph topology and
feature representations. Theoretically speaking, for extremely
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Fig. 2. Non-cherry-picked random samples from the testing set as well as samples generated by GSDM (ours) and GDSS [10], on Grid (top row) and Community-
small (bottom row) datasets. For GDSS, we use the authors’ released code and checkpoints to generate the samples.

sparse graphs (e.g. social networks, molecules) with low-rank
adjacency matrices, the adjacency score functions are supported
on a low-dimensional manifold embedded in the full adjacency
matrix space. Thus, directly applying diffusion models on graph
topology generation is not desirable: once the diffusion SDE
is run in the full space of the adjacency matrix, lethal noise
will be injected into the out-of-support regions and drives the
signal-to-noise ratio to be essentially zero, which is fatal for
training score networks.

Even for densely connected graphs, the standard diffusion
model is problematic for topology generation. Unlike image
pixels that are merely locally correlated, an adjacency matrix
governs the message-passing pattern of the whole graph. Thus,
isotropic Gaussian noise insertion severely distorts the message-
passing pattern, by blindly encouraging message passing on
sparsely connected parts, which impedes the representation
learning of sparse regions.

In order to establish a graph-friendly diffusion model, one
should design an appropriate diffusion scheme that is compatible
with the graph topology structure. To this end, we propose the
Graph Spectral Diffusion Model (GSDM), which is driven by
diffusion SDEs on both the node feature space and the graph
spectrum space. At each diffusion step, instead of corrupting
the entire adjacency matrix, our method confines the Gaussian
insertion to the graph spectrum space, i.e. the eigenvalue matrix
of the adjacency matrix. This novel diffusion scheme enables us
to perform smooth transformations on graph data during both the
training and sampling phases. As illustrated in Fig. 2, our pro-
posed GSDM significantly outperforms the standard graph dif-
fusion model (GDSS [10]) in terms of graph generation quality
and plausibility. For the Grid dataset shown in the top row of the
figure, GDSS samples seem to be merely chaotic clusters, while
GSDM samples exhibit smooth surface-like patterns that are
visually similar to real data. For the Community-small dataset
shown in the bottom row of the figure, GDSS fails to capture the
link between two communities on some samples, while GSDM
is able to capture dumbbell-like patterns (two clusters connected
by one edge) as well as butterfly-like patterns (two clusters
connected by two edges). This implies that GDSS’s generation
not only fails to mimic the observed topology distribution but

also suffers from capturing challenging details of the data such
as links between communities. In contrast, GSDM is capable of
generating high-quality graphs that are topologically similar to
the real data, while retaining critical details.

We empirically evaluate the capability of our proposed GSDM
on generic graph generation tasks, by evaluating the generation
quality on both synthetic and real-world graph datasets. As
shown in Section IV, GSDM outperforms existing one-shot gen-
erative models on various datasets, while achieving competitive
performance to autoregressive models. Further molecule gener-
ation experiments show that our GSDM outperforms the state-
of-the-art baselines, demonstrating that our proposed spectral
diffusion model is capable of capturing complicated dependency
between nodes and edges. Our main contributions are 3 folds:
� We propose a novel Graph Spectral Diffusion Model

(GSDM) for fast and quality graph generation. Our method
overcomes the limitations of existing graph diffusion mod-
els by leveraging diffusion SDEs on both the node feature
and graph spectrum spaces.

� Through the lens of stochastic analysis, we prove that
GSDM enjoys a substantially stronger performance guar-
antee than the standard graph diffusion model. Our pro-
posed spectral diffusion sharpens the reconstruction error
bound from O(n2 exp(n2)) to O(n exp(n)), where n is
the number of nodes.

� We evaluate GSDM on both synthetic and real-world graph
generation tasks. GSDM outperforms all existing graph
generative models and also achieves evidently higher com-
putational efficiency compared to existing graph diffusion
models.

II. RELATED WORK

In recent years, there have been several advanced graph gen-
eration strategies proposed, as outlined in [3], [8], [9], [12], [14],
[15] and [10]. Among these, GraphRNN [9] and GraphVAE [8]
generate nodes and edges sequentially with validity checks,
while GAN-based models [16], VAE-based models [15], flow-
based models [3], and score-based models [10], [12] generate the
entire graph in an integrative way and exhibit high computational
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efficiency due to their node permutation-invariant property. Our
proposed GSDM, which generates data by reversing a spectral
diffusion SDE with a learned spectral score function, falls into
the score-based model category. Specifically, GSDM accepts the
destination of the reversed diffusion SDE as the final generated
samples, without requiring any additional refinements.

A recently proposed score-based model, GDSS [10], is the
first state-of-the-art diffusion-based generative model that si-
multaneously conducts nodes and edges generation. In essence,
GDSS recasts the image diffusion paradigm [13] for graph
generation. During the forward diffusion process, GDSS injects
Gaussian noise into both the node features and the adjacency
matrix at each diffusion step. Then, a neural network is trained
to learn the score function by minimizing the score-matching
objective, which enables a reversion of graph data from noise
via a reversed time diffusion process. However, such a directly
borrowed diffusion model is incompatible with graph topology
generation: unlike images that are feature-rich, the graph adja-
cency matrix is generally sparse and low-rank. Hence, injecting
isotropic Gaussian noise into the sparsely connected parts of the
adjacency matrix severely harms the graph data distribution and
makes it hard to be recovered from Gaussian noise.

Recent advancements in the field of image generation and
molecule generation have been exploring ideas that are relevant
to our work. Subspace Diffusion [17] adopts image downsam-
pling to restrict the image diffusion process via projections onto a
sequence of progressively smaller subspaces as the data evolves
towards noise. Wavelet-Score Diffusion (WSGM) [18] adopts
wavelet transformation on the image to construct multi-level
subspaces, and conducts diffusion training and sampling on the
corresponding subspaces. In the field of molecule generation,
Torsional diffusion [19], DiffDock [20], and FoldingDiff [21]
explore diffusion method for 3D molecule generation with a
similar principle: they utilize diffusions on the flexible reparame-
terized space of 3D molecules instead of canonical 3D Cartesian
space. Corresponding reparameterized spaces include: internal
angles of atoms [21], chirality tags, bond lengths and torsion
angles of atoms [19], as well as translations and rotations of
molecules [20].

III. PRELIMINARIES

In this paper, we denote the probability space of interest as
(Ω,F ,P) and (Ft)t∈R be a filtration, i.e. a sequence of increasing
sub-σ-algebra of F . Without specification, we denote (Bt)t∈R
as the d-dimensional standard Brownian motion on the filtered
probabilistic space (Ω,F ,P, (Ft)t∈R). The distribution, support
set, and expectation of a random variable z are defined as law(z),
supp(z) and E[z]. y|z denotes the distribution of y conditioned
on z. Unif(A) denotes the uniform distribution on a set A. ‖ · ‖
denotes the standard Euclid norm. ‖ · ‖∞ and ‖ · ‖lip denotes the
supremum norm and Lipschitz norm of a function. [·] denotes
the flooring function.

A. Score-Based Generative Diffusion Model

A generative model refers to a mapping gθ : Rd �→ R
d, which

maps a simple known priori π to a complicated data distribution

D. Once the model gθ is sufficiently trained on N i.i.d samples
from D, denoted by S , it enables us to generate plausible in-
stances fromD directly, by sampling from gθ(ε), ε ∼ π. Unlike
conventional generative models, e.g. VAE and GAN, which treat
D as a unilateral transformation of π, diffusion models consider
the bilateral relation between D and π from the perspective of
SDE. Given an SDE traveling from D to π, the corresponding
reversed time SDE enables us to backtrack from noisy priori to
the distribution of interest.

Lemma III.1 (Forward Diffusion and Reversed Time
SDE [22]):

The Forward Diffusion refers to the following SDE

z0 ∼ D, dzt = f(zt, t)dt+ σtdBt, t ∈ [0, 1], (1)

where f(·, t) : Rd �→ R
d is the drift function, σt : [0, 1] �→ R be

a scalar diffusion function. Let pt(·) be the probability density
function of zt, then the Reversed Time SDE is given by

dz̄t = (f(z̄t, t)− σ2
t∇ log pt(z̄t))dt̄+ σtdB̄t, (2)

where z̄1 ∼ z1, t ∈ [0, 1], dt̄ = −dt is the negative infinitesimal
time step, (B̄t)t∈R is a reversed time Brownian motion w.r.t
(Ω,F ,P, (F̄t)t∈R), and (F̄t)t∈R is the corresponding decreasing
filtration, and ∇ log pt(·) is the score function.

During the forward diffusion process, with a carefully de-
signed f(·, t), the original data is perturbed by Gaussian noise
with increasing magnitude, and it is assumed to be gradually
corrupted to a truly noisy signal (priori), i.e. law(z1) = π. In
order to draw new data from D via the reversed time SDE, one
needs to learn the unknown score function ∇ log pt(·) with a
neural network sθ(·) : Rd �→ R

d, by minimizing the following
explicit score matching error:

E(θ) � Ez∼DEzt|z‖sθ(zt)−∇ log pt(zt)‖2. (3)

In practice, we employ a Gaussian priori π. For each sample
zi ∈ S , we first generate a sequence of corrupted data {zitj}Tj=1

by discretizing (1). To learn the score network sθ(·), one can
minimize a more tractable denoising score matching objective
Ê(θ)

Ê(θ) � Ez∼Unif(S)Ezt|z‖sθ(zt)−∇ log p(zt|z)‖2, (4)

which has been proven to be equivalent to E(θ) in [23]. Given
a well trained score network sθ∗(·), one is able to generate
plausible data from π via solving the learned reversed-time SDE

dẑt = (f(ẑt, t)− σ2
t sθ∗(ẑt))dt̄+ σtdB̄t, (5)

where ẑ1 ∼ π and t ∈ [0, 1]. Ideally, the learned reversed time
SDE should lead us towards D, i.e. law(ẑ0) = D.

IV. METHODOLOGY

In this section, we establish the Graph Spectral Diffusion
Model (GSDM) for fast and effective graph data generation. In
Section IV-A, we briefly review the standard score-based graph
diffusion model [10]. In Section IV-B, we formally introduce our
GSDM algorithm and its α-quantile variants. In Section IV-C,
we provide theoretical analyses to justify the efficacy of GSDM
on graph data generation.
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A. Standard Graph Diffusion Model

A graph with n nodes is defined as G � (X,A) ∈ R
n×d ×

R
n×n, where X ∈ R

n×d is the node feature matrix with dimen-
sion d and A ∈ R

n×n denotes the adjacency matrix. A graph
generative model aims to learn the underlying data distribution,
say G ∼ G, which is a joint distribution of both X and A. Note
that, if (X,A) is treated as a whole and omits the intrinsic graph
structure, the aforementioned score-based generation frame-
work can be parallelly extended to the graph generation setting,
which yields the standard graph diffusion model, i.e. GDSS [10].
Roughly speaking, for each graph sample (X,A), we first
generate a sequence of perturbed graphs {(Xti ,Ati)}Ti=1 via
forward diffusion. Then, we train two score networks sθ(·) and
sφ(·) to learn the score functions for bothXt andAt, with which
we can generate new data from π by running the reversed time
SDE.

Definition 1 (Graph Diffusion SDEs):
The Forward Graph Diffusion refers to the following SDE

system {
dXt = fX(Xt, t)dt+ σX,tdB

X
t ,

dAt = fA(At, t)dt+ σA,tdB
A
t ,

(6)

where (X0,A0) ∼ G, t ∈ [0, 1], fX(·, t) : Rn×d �→ R
n×d and

fA(·, t) : Rn×n �→ R
n×n is the drift functions for nodes feature

and adjacency matrix; σX,t, σA,t are the scalar diffusion terms
(a.k.a noise schedule function), and (BX

t )t∈R and (BA
t )t∈R are

standard Brownian motions on R
n×d and R

n×n, respectively.
To alleviate the computational burden of calculating the drift

w.r.t the high dimensionalG, the drift term of forward graph dif-
fusion is disentangled into fX(·, t) and fA(·, t). Again, Lemma
III.1 guarantees the existence of the reversed time SDEs for
graph diffusion.

Corollary 1 (Reversed Time SDEs for Graph Diffusion): The
reversed time SDE system of (6) is given by{
dX̄t=

(
fX(X̄t, t)−σ2

X,t∇X log pt(X̄t, Āt)
)
dt̄+σX,tdB̄

X
t ,

dĀt=
(
fA(Āt, t)−σ2

A,t∇A log pt(X̄t, Āt)
)
dt̄+σA,tdB̄

A
t ,

(7)

where (X̄1, Ā1) ∼ π, t ∈ [0, 1], dt̄ = −dt is the negative in-
finitesimal time step, (B̄X

t )t∈R and (B̄A
t )t∈R are the reversed

time standard Brownian motions induced by (6).
The disentanglement of the drift functions implies the condi-

tional independence Xt ⊥ At|G0, with which we can decom-
pose pt(X̄t, Āt) into pt|0(Xt|X0) · pt|0(At|A0), where pt|0(·)
denotes the density function of Gt|G0. As proposed in [10],
such conditional independence reduces the denoising score-
matching objective to a simpler form

Ê(θ) � EG∼Unif(S)EGt|G‖sθ(Gt)−∇ log pt|0(Xt|X0)‖2,
(8)

Ê(φ) � EG∼Unif(S)EGt|G‖sφ(Gt)−∇ log pt|0(At|A0)‖2.
(9)

Hence, the training and sampling procedures can be directly
borrowed from standard score-based models.

While GDSS is the first attempt at leveraging diffusion models
on graph generation, its performance is hindered by the brute-
force application of diffusion. For sparsely connected graphs,
while the distribution of node features varies across datasets, the
distribution of graph topology, i.e. adjacency matrix, resides in a
low dimensional manifold. As mentioned in Section I, an evident
pattern of the adjacency matrices also implies that the true
distribution of A is of low rank. In this case, the score-matching
objective fails to provide consistency estimators. Although run-
ning a full rank diffusion on A ∈ R

n×n alleviates this issue by
extending the support of corrupted data from the manifold to
the full space, it inevitably introduces lethal noise to regions of
zero probability density. As a consequence, the signal-to-noise
ratio of regions out of supp(A) is essentially zero, which is
a catastrophe for training the denoising score network. Note
that such full-rank diffusion is also inappropriate for densely
connected graph generation. This is because an isotropically
corrupted adjacency matrix encourages delusive message pass-
ing on sparsely connected parts of the graph, which is destructive
to the graph message passing pattern. Thus, standard diffusion
can severely impair representation learning for sparse graph
regions.

B. Graph Spectral Diffusion Model

To address these notorious yet ubiquitous issues, we propose
a novel Graph Spectral Diffusion Model. For graph topology
generation, in contrast to GDSS which is driven by a full-
rank diffusion on the whole space R

n×n, our GSDM lever-
ages low-rank diffusion SDEs on the n-dimensional spec-
trum manifold, e.g. the span of n-eigenvalues of A. As we
shall see later, GSDM achieves both robustness and compu-
tational efficiency, by exploiting the graph spectrum struc-
ture and running diffusion on an information-concentrated
manifold.

Definition 2 (Graph Spectral Diffusion SDEs):
Let the spectral decomposition of A be UΛU�, where

columns of U are the orthonormal eigenvectors and Λ be the
diagonal eigenvalue matrix, i.e. spectrum. The Forward Spectral
Diffusion refers to the following SDE system

{
dXt = fX(Xt, t)dt+ σX,tdB

X
t ,

dΛt = fΛ(Λt, t)dt+ σΛ,tdW
Λ
t ,

(10)

where (X0,A0) ∼ G, A0 = U0Λ0U
�
0 , t ∈ [0, 1], fX(·, t) :

R
n×d �→ R

n×d is the drift for nodes feature; fΛ(·, t) : Rn �→ R
n

is the drift for spectrum, which only acts on the diagonal entries;
σX,t, σΛ,t are the scalar diffusion terms (a.k.a noise schedule
functions), (BX

t )t∈R and (BΛ
t )t∈R are standard Brownian mo-

tions on R
n×d and R

n, respectively; and WΛ
t � diag(BΛ

t ) is a
diagonal Brownian motion.

As will be illustrated later, the evolution ofAt � U0ΛtU
�
0 is

driven by a n-dimensional Gaussian process. Hence, we prevent
the corrupted adjacency matrix from rampaging around the full
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space. We are now ready to establish the reversed time spectral
diffusion SDEs.

Corollary 2 (Reversed Time Spectral Diffusion SDEs): The
reversed time Spectral Diffusion SDE system of (10) is given by{
dX̄t=

(
fX(X̄t, t)−σ2

X,t∇X log pt(X̄t, Λ̄t)
)
dt̄+σX,tdB̄

X
t ,

dΛ̄t=
(
fΛ(Λ̄t, t)−σ2

Λ,t∇Λ log pt(X̄t, Λ̄t)
)
dt̄+σΛ,tdW̄

Λ
t ,

(11)

where (X̄1, Λ̄1) ∼ π, t ∈ [0, 1], dt̄ = −dt is the negative in-
finitesimal time step; (B̄X

t )t∈R and (B̄Λ
t )t∈R are reversed

time standard Brownian motions induced by (6), and W̄Λ
t �

diag(B̄Λ
t ).

Since U is no longer involved in (11), the boundary con-
dition is only imposed on the joint distribution of (X1,Λ1)
such that law(X1,Λ1) = π. This assumption implies that the
authentic distribution (X0,Λ0) can be recovered from a pri-
ori π by the reversed time spectral diffusion SDE. Accord-
ing to score matching techniques [23], we can train two
score networks sθ(·, ·, ·), sφ(·, ·, ·) to learn the score functions
∇X log pt(·, ·),∇Λ log pt(·, ·) via minimizing

Ê(θ)
� EG∼Unif(S)EXt|G‖sθ(Xt,Λt,U0)−∇ log pt|0(Xt|X0)‖2,
Ê(φ)
� EG∼Unif(S)EΛt|G‖sφ(Xt,Λt,U0)−∇ log pt|0(Λt|Λ0)‖2.

In a nutshell, the proposed GSDM has two main steps:
1) Run forward spectral diffusion model on (X,Λ) by (10).

Train two score networks sθ(·, ·, ·), sφ(·, ·, ·) to learn score
functions showing up in (11).

2) Uniformly sample Û0 from the observed eigenvector ma-
trices. Generate plausible (X̂0, Λ̂0) by reversing the spec-
tral diffusion SDEs from t = 1 to t = 0, with estimated
score functions sθ(X̂t, Λ̂t, Û0), sφ(X̂t, Λ̂t, Û0).

Since the full adjacency matrices are not involved in the
computation of diffusion SDEs, GSDM achieves significant
acceleration in both training and sampling. Moreover, one can
further enhance the computational efficiency, by confining the
spectral diffusion to the top-k largest eigenvalues of A, where
k � [αn]. SupposeΛk is the truncated eigenvalue matrix, where
only the top-k diagonal entries ofΛ are preserved, we can define
the α-quantile GSDM by substituting the occurrence of Λ in
GSDM with Λ(k). As will be seen in the following section,
α-quantile GSDM exhibits evidently faster processing speed and
comparable performance to GSDM.

The pseudo codes of training and sampling with GSDM are
described in Algorithms 1 and 2. Specifically, we first train a
GSDM from real data by minimizing score-matching errors. On
top of that, we are able to generate graph features and eigenvalues
of graph adjacency matrices by reversing the forward spectral
SDE. By uniformly sampling eigenvectors from the training set,
we can construct a plausible graph adjacency matrix via spectral
composition.

Algorithm 1: Training of GSDM.

Input: Score networks sθ,t(·, ·, ·), sφ,t(·, ·, ·), maximal
diffusion time T , drift functions fX(·, t), fΛ(·, t), noise
schedules σX,t, σΛ,t, learning rate η, training epochs K.

Output: Optimized score network parameters θK ,φK .
1: Initialize θ0,φ0

2: for k = 1 to K do
3: (X0,A0) ∼ G;
4: Λ0,U0 ← EigenDecomposition(A0);
5: t ∼ Unif([0, T ]);
6: Xt ∼

∫ t

0 fX(Xτ , τ)dτ +
∫ t

0 σX,τdB
X
τ

7: Λt ∼
∫ t

0 fΛ(Λτ , τ)dτ +
∫ t

0 σΛ,τdB
Λ
τ ;

8: Ê(θk)← ‖sθk
(Xt,Λt,U0)−∇ log pt|0(Xt|X0)‖2;

9: Ê(φk)← ‖sφk
(Xt,Λt,U0)−∇ log pt|0(Λt|Λ0)‖2;

10: (θk+1,φk+1)← (θk,φk)− η(∇Ê(θk),∇Ê(φk));
11: end for
12: Return: θK ,φK ;

C. Theoretical Analysis

Here, we provide supportive theoretical evidence for the ef-
ficacy of GSDM. In Proposition 1, we first study the low-rank
structure of the spectral diffusion SDE of adjacency matrices.
In Proposition 2, we further prove that our proposed spectral
diffusion enjoys a sharper reconstruction error bound than the
standard graph diffusion model.

Proposition 1 (Spectral Diffusion SDEs on Adjacency Ma-
trix): Suppose fΛ(Λ, t) � −σ2

Λ,t/2Λ. The spectral diffusion
SDE system (10) induces an n-dimensional SDE system of the
adjacency matrix A on the full space Rn×n. Following previous
notations, the forward diffusion SDE is given by{

dXt = fX(Xt, t)dt+ σX,tdB
X
t ,

dAt = − 1
2σ

2
Λ,tAtdt+ σΛ,tdMt,

(12)

where (Mt)t∈[0,1] is a n-dimensional centered Gaussian pro-
cess on R

n×n, with zero mean and covariance kernel K(s, t) :
[0, 1]× [0, 1] �→ R

n×n×n×n as

K(s, t)i,j,k,l=min(s, t) ·
n∑

h=1

U0[i, h]U0[j, h]U0[k, h]U0[l, h].

Hence, the conditional distribution of At on A0 is Gaussian

At|A0 ∼ N
(
At;A0e

− 1
2

∫ t
0 σ2

τdτ , (1− e−
∫ t
0 σ2

τdτ )K(1, 1)
)
,

(13)

which admits a closed-form probability density function.
Remark 1: The proof can be found in Section V-A. Proposi-

tion 1 shows that our spectral diffusion framework substantially
recasts the evolution of the adjacency matrix, by driving the n2-
dimensional SDE with n-dimensional noise (Mt)t∈R. Guided
by the graph spectrum, the diffusion is concentrated to the salient
parts of supp(A) to prevent introducing irreducible noise to the
out-of-support regions.

The central question for graph generation is how to measure
the quality of the synthesis data that is recovered from noise with
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Algorithm 2: Sampling via GSDM.

Input: Score-based models sθ,t(·, ·, ·) and sφ,t(·, ·, ·),
maximal diffusion time T , number of sampling steps M ,
Langevin-MCMC step sizes {εi}Mi=1, noise schedules
{βi}Mi=1 and priori distribution π. Initialize eigenvectors
randomness σ > 0. Empirical average eigenvectors Ū.

Output: Generated graph data (X̂0, Â0).
1: t← T ;
2: (X̂T , Λ̂T ) ∼ π

3: Û0 ∼ Unif({U � EigenVectors(A), (X,A) ∼ G});
4: for m = M − 1 to 0 do
5: SX ← sθ,t(X̂t, Λ̂t, Û0), SΛ ← sφ,t(X̂t, Λ̂t, Û0)
6: t′ ← t− T/(2M);
7: X̂t′ ← (2−√1− βm+1X̂t + βm+1SX) +√

βm+1zX , zX ∼ N(0, I) {Prediction step: X}

8: Λ̂t′ ← (2−√1− βm+1Λ̂t + βm+1SΛ) +√
βm+1zΛ, zΛ ∼ N(0, I); {Prediction step: Λ}

9: SX ← sθ,t′(X̂t′ , Λ̂t′ , Û0)

10: SΛ ← sφ,t′(X̂t′ , Λ̂t′ , Û0);
11: t← t′ − T/(2M);
12: X̂t ← X̂t′ + εiSX +

√
2εizX , zX ∼ N(0, I);

{Correction step: X}
13: Λ̂t ← Λ̂t′ + εiSΛ +

√
2εizΛ, zΛ ∼ N(0, I);

{Correction step: Λ}
14: end for
15: Â0 = Û0Λ̂0Û

T
0 ;

16: Return: (X̂0, Â0);

the learned score function. The key to this question is to establish
the reconstruction error bound, i.e. the expected error between
the data reconstructed with ground truth score∇ log pt(·) and the
learned scores sφ(·). For graph topology generation, our GSDM
is proven to enjoy a sharper reconstruction bound than standard
graph diffusion. Detailed proof can be found in Section V-B.

Proposition 2 (Reconstruction Bounds for Adjacency Matrix
Generation): Following the previous notations, we define the
estimated reversed time SDEs for standard and spectral graph
diffusion models as

dÂfull
t =

(
−1

2
σ2
t Â

full
t − σ2

t sφ(Â
full
t , t)

)
dt̄+ σtdB̄

A
t ,

dÂspec
t =

(
−1

2
σ2
t Â

spec
t − σ2

t sϕ(Â
spec
t , t)

)
dt̄+ σtdM̄t,

where both generation methods share the same drift
term and noise schedule (σt)t∈[0,1]. We further assume

that ‖sφ(·, t)‖lip = O(E|A0
‖∇A log pt|0(Âfull

t )‖lip) and

‖sϕ(·, t)‖lip = O(E|A0
‖∇A log pt|0(Â

spec
t )‖lip) holds almost

surly. By reversing both SDEs from t = 1 to t = 0, we
obtain Âfull

t and Âspec
t , which are two reconstructions of the

authentic A0, with expected reconstruction errors bounded
by

E‖A0 − Âfull
0 ‖2

� ME(φ) ·
(
1 + n2K

∫ 1

0

Σ−2t exp

(
n2K

∫ 1

t

Σ−2s ds

)
dt

)
,

E‖A0 − Âspec
0 ‖2

� ME(ϕ) ·
(
1 + nK

∫ 1

0

Σ−2t exp

(
nK

∫ 1

t

Σ−2s ds

)
dt

)
,

where M � C2‖σ·‖4∞; K � 2ML/E‖A0‖2,2; C,L are abso-

lute constants; Σ2
t � 1− e−

∫ t
0 σ2

sds; E(·) is the expected score
matching objective defined in (3).

Remark 2: While the error bound of Âfull
0 is at the order of

O(n2 exp(n2)), Âspec
0 exhibits a much sharper bound of order

O(n exp(n)). For large-scale graphs with a large number of
nodes n, our proposed GSDM enjoys a substantially better
performance guarantee, which coincides with our numerical
results. Moreover, under additional conditions, the error bounds
can be significantly improved for well-trained score networks
φ∗,ϕ∗, by showing that E(φ∗)� E(φ) as in Proposition 3.
The detailed proof can be found in Section V-C.

Definition 3 (β-smooth): f : Rm �→ R
n is called β-smooth if

and only if

‖f(x1)− f(x2)−∇f(x2)
�(x1 − x2)‖ � β

2
‖x1 − x2‖2

holds for ∀ x1, x2 ∈ R
m.

Proposition 3 (Convergence of Score Matching Objective
Minimization): Recall that the score matching objective of a
generic sample Z ∈ R

d (Âfull or Âspec) is defined as

E(θ;Z) � EZt|Z‖sθ(Zt, t)−∇Z log pt(Zt)‖2, (14)

and expected and empirical score-matching errors are defined
as

E(θ) � EZ∼DE(θ;Z) (15)

Ê(θ;SN ) � EZ∼SNE(θ;Z) (16)

where D is the population distribution of Z, and S � {Zi}Ni=1

is the uniform distribution over an i.i.d sampled training dataset
of size N . Suppose E(θ) is minimized via running standard
Stochastic Gradient Descent (SGD) on training data, i.e. at the
k-th iteration, θk is updated on a mini-batch of size b

θk+1 � θk − η∇θÊ(θ;Sb). (17)

Assume that almost surely (w.r.t Z), E(·;Z) is β-smooth, and
the tangent kernel Kθ(S) ∈ R

Nd×Nd of sθ(·) satisfies

λmin (Kθ(S)) � λ > 0, θ ∈ B(θ0, R),

Kθ(S)[Ni+ 1 : N(i+ 1), Nj + 1 : N(j + 1)]

� ∇θsθ(Z
i)�∇θsθ(Z

j),

with R = 2N
√

2βE(θ0)/(μδ), δ > 0. Then, with probability
1− δ over the choice of mini-batch Sb, SGD with a learning
rate η � λ/N

Nβ(N2β+λ(b−1)/N) converges to a global solution in
the ball B(θ0, R) with exponential convergence rate

E(θk) �
(
1− λbη

N

)k

E(θ0). (18)
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V. DETAILED PROOFS

A. Proof of Proposition 1

Proof: Plugging At = U0ΛtU
�
0 into (12) yields

dAt = − 1

2
σ2
Λ,tAtdt+ σΛ,tdMt,

Mt � U0W
Λ
t U

�
0 = U0 · diag(BΛ

t ) ·U�0 .
Since (Mt)t∈R is a linear transformation of (BΛ

t )t∈R, the stan-
dard Brownian motion on R

n, hence (Mt)t∈R is a rank-n cen-
tered Gaussian process in R

n×n. Moreover, Mt is characterized
by its covariance kernel K(s, t) : [0, 1]× [0, 1] �→ R

n×n×n×n,
which is given by

K(s, t)i,j,k,l
� Cov(Ms[i, j],Mt[k, l]) = E[Ms[i, j]Mt[k, l]]

= E

(
n∑

h=1

U0[i, h]B
Λ
s [h]U0[j, h]

)

×
(

n∑
h=1

U0[k, h]B
Λ
t [h]U0[l, h]

)

=

n∑
h=1

E(BΛ
s [h]B

Λ
t [h])U0[i, h]U0[j, h]U0[k, h]U0[l, h]

= min(s, t)

n∑
h=1

U0[i, h]U0[j, h]U0[k, h]U0[l, h].

Notice that (10) is an Ornstein–Uhlenbeck process, which
admits a closed-form solution

Λt = Λ0e
− 1

2

∫ t
0 σ2

τdτ + (1− e−
∫ t
0 σ2

τdτ )WΛ
1 . (19)

Hence, plugging (19) into At = U0ΛtU
�
0 yields

At = A0e
− 1

2

∫ t
0 σ2

τdτ + (1− e−
∫ t
0 σ2

τdτ )M1. (20)

This completes the proof. �

B. Proof of Proposition 2

In preparation for the main proof, we first establish some
technical lemmas.

Lemma V.1 (Reconstruction Bound for Generic Diffusion):
We first consider the following oracle reversed time SDE on
(Rd, ‖ · ‖)
dZ̄t =

(
f(Z̄t, t)− σ2

t∇Z log pt(Z̄t)
)
dt̄+ σtdB̄t, t ∈ [0, 1],

and we define the corresponding estimated reverse time SDE as

dẐt =
(
f(Ẑt, t)− σ2

t sφ(Ẑt, t)
)
dt̄+ σtdB̄t, t ∈ [0, t],

where sφ(·) is optimized to predict the Stein score function
∇Z log pt(Zt) by minimizing the score matching objective

min
φ
E(φ) � EZEZt|Z‖sφ(Zt, t)−∇Z log pt(Zt)‖2.

Then for any φ, the construction error is bounded by
E‖Z0 − Ẑ0‖2 � C2‖σ·‖4∞E(φ)

·
(
1 +

∫ 1

0

F (t) exp

(∫ 1

t

F (s)ds

)
dt

)
,

(21)

where F (t) � C2σ4
t ‖sφ(·, t)‖2lip + C‖f(·, t)‖2lip and C is a con-

stant.
Proof of Proposition 2: Assumptions of Proposition 2 imply

‖f(·, t)‖lip =
1

2
σ2
t ,

‖sφ(·, t)‖lip � L · E|A0
‖∇ log pt|0(Âfull

t )‖lip,

‖sϕ(·, t)‖lip � L · E|A0
‖∇ log pt|0(Â

spec
t )‖lip,

where L is a constant. According to [11], [13], at each time
step t ∈ [0, 1], the oracle conditional score function∇ log pt|0(·)
is equivalent to a mapping that maps the input d-dimensional
random variable Zt to Σ−1t ε. The shown up ε is a d-dimensional
standard Gaussian vector that is independent to Zt, and Σt

is the standard deviation of Zt, which is given by Σt � (1−
e−

∫ t
0 σ2

sds)
1
2 . Thus, the expected Lipschitz norm of oracle con-

ditional score function is bounded by(
E|A0
‖∇ log pt|0(Zt)‖lip

)2 � E|A0
‖∇ log pt|0(Zt)‖2lip

� Σ−2t

‖Z0‖2E‖ε‖
2 =

Σ−2t d

‖Z0‖2 . (22)

With Lemma V.1 in hand, we only need to plug (22) into (21), by
substituting the notations (Z, d, ‖ · ‖) with (Âfull

t , n2, ‖ · ‖2,2)
and (Λ̂

spec
t , n, ‖ · ‖2,2) to bound the Lipschitz norm of the score

networks. This leads us to

E‖A0−Âfull
0 ‖2

�ME(φ) ·
(
1+n2K ·

∫ 1

0

Σ−2t exp

(
n2K

∫ 1

t

Σ−2s ds

)
dt

)
,

E‖Λ0 − Λ̂
spec
0 ‖2

� ME(φ) ·
(
1 + nK ·

∫ 1

0

Σ−2t exp

(
nK

∫ 1

t

Σ−2s ds

)
dt

)
,

whereM � C2‖σ·‖4∞ andK � 2ML/E‖A0‖2,2. For the spec-
tral diffusion part, the final proof step is completed by the fact
that

E‖A0−Âspec
0 ‖2=E‖U0

(
Λ0−Λ̂spec

0

)
U�0 ‖2=E‖Λ0−Λ̂spec

0 ‖2,

E‖A0‖2,2=E‖U0Λ0U
�
0 ‖2,2=E‖Λ0‖2,2.

This completes the proof. �
Proof of Lemma V.1:
To bound the expected reconstruction error E‖Z0 − Ẑ0‖2,

we first analysis how E‖Z̄t − Ẑt‖2 evolves as time t is reversed
from 1 to 0. By definition, it holds that

Z̄t−Ẑt =

∫ t

1

(
f(Z̄s, s)− f(Ẑs, s)

)
+ σ2

s

(
sφ(Ẑs, s)−∇Z log ps(Z̄s)

)
ds̄.
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By taking norm and expectation on both sides, we have

E‖Z̄t − Ẑt‖2

� E

∫ t

1

∥∥∥∥(f(Z̄s, s)−f(Ẑs, s)
)

+σ2
s

(
sφ(Ẑs, s)−∇Z log ps(Z̄s)

)∥∥∥∥2ds̄
� CE

∫ t

1

∥∥∥f(Z̄s, s)− f(Ẑs, s)
∥∥∥2 ds̄

+ CE

∫ t

1

σ4
s

∥∥∥sφ(Ẑs, s)−∇Z log ps(Z̄s)
∥∥∥2 ds̄

� C2

∫ t

1

σ4
s · E

∥∥∥sφ(Ẑs, s)− sφ(Z̄s, s)
∥∥∥2

+ σ4
s · E

∥∥sφ(Z̄s, s)−∇Z log ps(Z̄s)
∥∥2 ds̄

+ C

∫ t

1

‖f(·, s)‖2lip · E
∥∥∥Z̄s − Ẑs

∥∥∥2 ds̄
�
∫ t

1

(
C2σ4

s‖sφ(·, s)‖2lip + C‖f(·, s)‖2lip
)︸ ︷︷ ︸

F (s)

·E
∥∥∥Ẑs − Z̄s

∥∥∥2 ds̄
+ C2

∫ t

1

σ4
sds̄ · E(φ)︸ ︷︷ ︸

G(t)

.

The proof is completed by applying the Grönwall’s inequality
to t �→ E‖Z̄t − Ẑt‖2, which yields

E‖Z̄0 − Ẑ0‖2

� G(0) +

∫ 1

0

G(t)F (t) exp

(∫ 1

t

F (s)ds

)
dt

� C2‖σ·‖4∞E(φ) ·
(
1 +

∫ 1

0

F (t) exp

(∫ 1

t

F (s)ds

)
dt

)
.

C. Proof of Proposition 3

Proof: Since E(θ) = ES∼DN Ê(θ;SN ), we only need to
bound the empirical risk Ê(θ;SN ). By assumption, denote

h �

⎛⎜⎜⎝
sθ(Z

1
0)−∇ log p(Z1

0|Z1
1)
�

...

sθ(Z
N
0 )−∇ log p(ZN

0 |ZN
1 )�

⎞⎟⎟⎠ ∈ R
Nd×1,

It holds that

‖∇θÊ(θ;SN )‖2= 1

N2
h�Kθ(S)h� λ

N2
‖h‖2= λ

N
Ê(θ;SN ),

which implies that Ê(θ;SN ) satisfies the λ
N -Polyak Łojasiewicz

condition [24]. Then the proof is completed by applying Theo-
rem 7 in [24] to Ê(·;SN ). �

VI. EXPERIMENTS

In this section, we evaluate our proposed GSDM with state-of-
the-art graph generative baselines on two types of graph genera-
tion tasks: generic graph generation and molecule generation,
over several benchmark datasets. We also conduct extensive
ablation studies and visualizations to further illustrate the ef-
fectiveness and efficiency of GSDM.

A. Generic Graph Generation

Datasets: We test our model on three generic datasets with
different scales, and we useN to denote the number of nodes: (1)
Community-small (12 ≤ N ≤ 20): contains 100 small commu-
nity graphs. (2) Enzymes (10 ≤ N ≤ 125): contains 578 protein
graphs which represent the protein tertiary structures of the en-
zymes from the BRENDA database. (3) Grid (100 ≤ N ≤ 400):
contains 100 standard 2D grid graphs. To fairly compare our
model with baselines, we adopt the experimental and evaluation
setting from [9] with the same train/test split.

Baselines: We compare our model with well-known or state-
of-the-art graph generation methods, which can be categorized
into auto-regressive models and one-shot models. The auto-
regressive model refers to sequential generation, which con-
structs a graph via a set of consecutive steps, usually done
nodes by nodes and edges by edges [14]. Under this category,
we include DeepGMG [25], GraphRNN [9], GraphAF [4], and
GraphDF [26]. The one-shot model refers to building a proba-
bilistic graph model that can generate all nodes and edges in one
shot [14]. Under this category, we include GraphVAE [8], Graph
Normalizing Flow(GNF) [27], EDP-GNN [12], and GDSS [10].
In addition to graph generation methods, we incorporate two
SOTA diffusion-based generation methods from the field of
computer vision into the task of graph generation: SubspaceD-
iff [17] and WSGM [18]. Implementation details of these two
methods are elaborated in the Appendix, available online.

Metrics: We adopt the maximum mean discrepancy (MMD)
to compare the distributions of graph statistics, such as the
degree, the clustering coefficient, and the number of occurrences
of orbits with 4 nodes [9], [10] between the same number of
generated and test graphs.

Results: We show the results in Table I. The results show that
our proposed GSDM significantly outperforms both the auto-
regressive baselines and one-shot baseline methods. Specifi-
cally, GDSS is the SOTA graph diffusion model which performs
the diffusion in the whole space of the graph data. Our method
substantially outperforms GDSS in terms of both average per-
formance and convergence rate (Fig. 3), which demonstrates
the advantages of performing SDEs in the spectrum of the graph
compared to the whole space.

B. Molecules Generation

Besides generic graph generation, our model can also generate
organic molecules through our proposed reverse diffusion pro-
cess. We test our model with two well-known molecule datasets:
QM9 [29] and ZINC250K [30]. Following previous works [10],
[26], the molecules are kekulized by the RDKit library [31] with
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TABLE I
GENERATION RESULTS ON THE GENERIC GRAPH DATASETS

Fig. 3. GSDM enjoys a significantly faster convergence rate than GDSS. On
the community-small dataset, our GSDM reaches the SOTA performance within
100 training epochs.

hydrogen atoms removed. We evaluate the quality of 10,000 gen-
erated molecules with Frechet ChemNet Distance (FCD) [32],
Neighborhood subgraph pairwise distance kernel (NSPDK)
MMD [33], validity w/o correction, and the generation time.
FCD computes the distance between the testing and the gener-
ated molecules using the activations of the penultimate layer of
the ChemNet. (NSPDK) MMD computes the MMD between the
generated and the testing set which takes into account both the
node and edge features for evaluation. Generally speaking, FCD
measures the generation quality in the view of molecules in the
chemical space, while NSPDK MMD evaluates the generation
quality from the graph structure perspective. Besides, follow-
ing [10], we also include the validity w/o correction as another
metric to explicitly evaluate the quality of molecule generation
prior to the correction procedure. It computes the fraction of the
number of valid molecules without valency correction or edge
resampling over the total number of generated molecules. In
contrast, validity measures the fraction of the valid molecules
after the correction phase. Generation time measures the time
for generating 10,000 molecules in the form of RDKit. It is
a salient measure of the practicability of molecule generation,
especially for macromolecule generation.

Baselines: We compare our model with the state-of-the-
art molecule generation models. The baselines include SOTA
auto-regressive models: GraphAF [4] is a flow-based model,
and GraphDF [26] is a flow-based model using discrete la-
tent variables. Following GDSS [10], we modify the archi-
tecture of GraphAF and GraphDF to consider formal charges
in the molecule generation, denoted as GraphAF+FC and
GraphDF+FC, for fair comparisons. For the one-shot model,
we include MoFlow [3], which is a flow-based model; EDP-
GNN [12] and GDSS [12] which are both diffusion models.

Results: We show the results in Table II. Evidently, GSDM
achieves the highest performance under most of the metrics.
The highest scores in NSPDK and FCD show that GSDM is
able to generate molecules that have close data distributions to
the real molecules in both the chemical space and graph space.
Especially, our model outperforms GDSS, in most of the metrics,
verifying that our proposed spectral diffusion is not only suitable
for generic graph generation but also advisable for molecule
designs.

Visualization of molecule generations: Apart from the visu-
alization of generated graphs in Fig. 2, visualizations of gen-
erated molecules are showed in Fig. 4. In the figure, we show
the generated molecules that are maximally similar to certain
training molecules. We compute the molecule similarity using
the Tanimoto similarity based on the Morgan fingerprints, which
are implemented based on REKit [31]. Higher Tanimoto scores
indicate that the model is able to generate more similar molecules
as the training set, which reflects the learning capability of the
model. As shown in the figure, compared to the GDSS model,
GSDM is able to generate molecules that have a more similar
distribution as the molecules in the training set.

Time Complexity: One of the main advantages of our GSDM
compared to other diffusion models (e.g. EDP-GNN and GDSS)
is the efficiency in generating molecules. We show the time
spent (in seconds) for generating 10,000 molecules in Table II,
demonstrating that our GSDM takes a significantly lower time
in the inference process compared to EDP-GNN and GDSS. Es-
pecially, compared to GDSS which requires 1.06e3 and 2.11e3
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TABLE II
GENERATION RESULTS ON THE QM9 AND ZINC250 K DATASETS

TABLE III
ABLATION STUDY ON THE α-QUANTILE EIGENVALUES

Fig. 4. Visualization of molecule generation with maximum Tanimoto sim-
ilarity of GSDM comparing to GDSS. The left part shows randomly selected
molecules from the training set of QM9 and Zinc250 k. For each generated
molecules, we show the Tanimoto similarity value at the bottom.

seconds to generate 10,000 molecule graphs according to QM9
and Zinc250 k, our model only takes 18.02 and 45.91 seconds,
which are 58× and 46× faster respectively. This phenomenon
verifies our methodology in designing the spectral diffusion that
not only the spectral diffusion is more effective than the whole
space diffusion, but also more efficient. Such an improvement
is crucial for numerous applications such as drug design and
material analysis.

Fig. 5. Ablation studies on different diffusion step numbers.

C. Ablation Studies

Ablation Studies on the Number of Diffusion Steps: To analyze
the robustness of our proposed GSDM during the reconstruc-
tion procedure (i.e. reverse diffusion process), we compare the
performance of our model with GDSS on varying numbers of
diffusion steps using the Community small and Grid dataset,
which represents small and large generic graphs respectively.
The default steps for our model and GDSS during training and
evaluation are 1,000 steps. Ideally, for diffusion models, with
the reduction in step numbers, the performance of the models
decreases, while the model of higher robustness still exhibits a
higher performance under different numbers of diffusion steps.
The results are shown in Fig. 5. We can observe that GSDM
outperforms GDSS in both datasets under different diffusion
steps. Specifically, in the Grid dataset, GSDM consistently
exhibits significantly higher performance than GDSS. In the
community small dataset, although GSDM and GDSS achieve
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Fig. 6. Ablation studies on diffusion and noise schedules.

similar performance at 50 steps, GSDM becomes much more
accurate when the number of steps is higher than 100.

Ablation Studies on the Type of Diffusion Schedules: As
mentioned in [13], [34] and [35], the performance of diffusion
models highly relies on the diffusion schedule, i.e. the scheduled
noise insertion process or discretization of certain types of
SDEs, which lies at the heart of both training and inference
phases. According to the taxonomy proposed in [13] and [11],
mainstream artificial diffusion schedules are categorized to be
either Variance Exploding (VE) or Variance Preserving (VP).
To improve model robustness against the choice of diffusion
schedules, [35] and [34] designed diffusion models with op-
timizable diffusion schedules. In this subsection, we conduct
systematic experiments on several datasets to test the robustness
of our proposed GSDM against different diffusion schedules.
As illustrated in Fig. 6(a), the state-of-the-art performance of
our GSDM is immune to the choice of diffusion schedule
and it frees us from tedious hyperparameter searching. When
compared with GDSS, GSDM exhibits evidently better aver-
age performance with much smaller variance across various
configurations.

Fig. 7. Eigenvalue distribution of three synthetic datasets.

We further empirically verify the robustness of our proposed
GSDM under various types of noise schedules. As shown in
Fig. 6(b), we design six representative noise schedules with
the same initial and final signal-to-noise ratio (defined in [13],
[34]), while exhibiting different behavior along the diffusion
process. For both VP- and VE-SDE configurations, we train
our proposed GSDM with six representative noise schedules
and we evaluate the average performance scores. Results on
Ego-small and Grid in Fig. 6(c) show that GSDM is ro-
bust to the choice of diffusion schedules, and it is able to
achieve SOTA performance without deliberate noise schedule
optimization.

Ablation Studies on Low-Rank Approximations of the Score-
Function: As mentioned in Section IV-B, one can further accel-
erate the training and sampling phases, by confining diffusion
to the partial spectrum of the graph adjacency matrix. Such
variants are coined as α-quantile GSDM in Section IV-B. In
this experiment, we select the top [αn] eigenvalues to conduct
the sampling process with a well-trained GSDM, where α is
chosen from {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The
results are shown in Table III.

Numerical experiments prove that the low-rank α-quantile
GSDM retains the state-of-the-art performance among most of
the baseline methods. Especially, for the Enzymes dataset, by
merely preserving the top-30% eigenvalues and eigenvectors,
the 0.3-quantile GSDM can still retain 98.2% of the performance
of the full GSDM. The ablation study justifies that our proposed
GSDM is capable of capturing essential knowledge that resides
on low-dimensional manifolds. It further demonstrates that α-
quantile GSDM enables outstanding scalability for large-scale
datasets.

Ablation Studies on Graphs With Different Eigenvalues Dis-
tributions: To analyze how GSDM performs under graphs
with different eigenvalue distributions, we randomly gener-
ate 3 types of synthetic graphs with eigenvalues distributions
shown in Fig. 7: synthetic-1 has evenly distributed eigenval-
ues, and synthetic-2 and synthetic-2 have moderate and high
distinctions in eigenvalues. Due to the predefined eigenvalue
distributions, the edge values of the synthetic graphs are not
limited to {0, 1}. Thus instead of using the metrics presented in
Section V-A, we directly compute the MMD of the adjacency
matrices between the generated graphs and the test graphs.
Corresponding results compared to GDSS are shown in Fig.
8. We also include an ablation variant of GSDM by using
only top-50% quantile eigenvalues. Both GSDM and its abla-
tion variant outperform the GDSS model under this synthetic
setting.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 04,2024 at 02:00:09 UTC from IEEE Xplore.  Restrictions apply. 



LUO et al.: FAST GRAPH GENERATION VIA SPECTRAL DIFFUSION 3507

Fig. 8. Experiments on synthetic datasets of which the eigenvalues’ distribu-
tions are shown in Fig. 7. The y-axis denotes the MMD (↓) of the adjacency
matrices between the generated graphs to the test graphs .

VII. CONCLUSION AND FUTURE WORK

In this paper, we present a novel graph diffusion model named
GSDM, which consists of diffusion methods on both graph node
features and topologies through SDEs. Specifically, for graph
topology diffusion, we design a novel spectral diffusion model
in GSDM, to improve the accuracy of predicting score functions,
and avoid the pitfalls of the conventional diffusion processes on
graphs. Furthermore, we provide theoretical analysis to justify
the advantages in effectiveness and efficiency of GSDM com-
pared to the standard graph diffusion. To validate our proposed
model, we conducted extensive experiments showing that our
proposed GSDM outperforms the state-of-the-art baseline meth-
ods on both generic graph generation and molecule generation
with significantly higher processing speed.

Note that in GSDM, we propose to perform a diffusion process
on the eigenvalues of the graph adjacency matrix. We also
present some ideas about performing diffusion on the eigen-
vectors of the graph adjacency matrix and discuss the potential
issues of the eigenvector-diffusion paradigms in Appendix C,
available online, and provide some preliminary empirical studies
in Appendix E, available online. In the future, we will explore
the possibility of developing an efficient algorithm to perform
diffusion on eigenvectors for graph generation.
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